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APPLICATION OF THE PHASE INTEGRAL METHOD TO THE
ANALYSIS OF THE DIFFRACTION AND REFRACTION
OF WIRELESS WAVES ROUND THE EARTH

By T. L. ECKERSLEY, B.A., B.Sc. axo G. MILLINGTON, M.A., B.Sc.

(Communicated by W. H. Eccles, F.R.S.—Received 11 June 1937—Revised 10 December 1937)

1. INTRODUCTION

The increasing use of short waves of less than 10 m. has given a new stimulus to the
problem of calculating the signal strength to be expected at a distance from a trans-
mitter, and especially of determining the gain of signal strength with height above the
ground. For short waves the predominant factor quite near to the transmitter is the
diffraction of energy round the curve of the earth with heavy earth losses, so that the
problem has to be approached by considering the complete solution for propagation
over an imperfectly conducting curved earth.

The solution of the problem was first put on an unimpeachable basis by Watson (1918),
who expressed the expansion for the potential function as a contour integral leading to
amore rapidly convergentseries, and his work has been the starting-point for subsequent
writers. His solution is formally complete, but the application of it to practical cases
involves considerable mathematical difficulties. He gave the solution explicitly only
for the case of long waves where the earth was so highly conducting that, for mathe-
matical purposes, it approached the limit given by a perfect conductor. Also, without
further reduction, the solution only expressed the potential function, and hence the
electromagnetic field, at points on the surface of the earth.

The complete solution of the problem, especially in its application to the propagation
of ultra-short electromagnetic waves, requires the working out of the height factor, and
the redetermination of the solution in the case where the simplifying conditions involved
in the assumption of long waves and a highly conducting earth are waived.

This solution might be effected by the same methods as were originally used by
Watson, in which he transforms the series for the potential function ¥, too slowly
convergent to be of any use, into a contour integral which, finally, is equivalent to the
sum of the residues of this integral. The calculation of these residues requires the deter-
mination of the zeroes of the denominator in the expression

on  vBy(—p).&y (kD)

kab cos va[0C, ,(ka) .4 (s)[ds],,” (1-1)
in which ¢(s) considered as a function of s is given by
k, .., /
3(s) = ~§7‘€{¢5-~;(/€Ld)/¢5—5(/ﬂd)}{Q_%(kd)/éf ~y(ka)}. (1-2)
Vor. CCXXXVIIL. A. 778. (Price 5s.) 35 [Published 10 June 1938
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274 T. L. ECKERSLEY AND G. MILLINGTON ON THE

Watson’s original paper should be consulted for the full explanation of these terms.
The difficulty of the analysis lies in the fact that this determination of the zeroes requires
an intimate knowledge of the intricate Bessel and Hankel functions involved.

In a paper by one of the writers (Eckersley 1931—2) it was shown that Watson’s
solution was essentially equivalent to an eigenfunction solution, appropriate to wave
problems of this type. Thus the eigenfunctions are the residues of the integrals discussed
above, and the proper values are the discrete values of s which make the expression for
¢(s) zero. This general relation was made clear by assuming a solution for the potential
function ¢ of the form exp(2m.S) /r, substituting this in the general differential equation
and determining the approximate condition for § in the form

S — iAf{ ( )(nJrl)}%dr, (1-3)

where 1is the wave-length, and  the prope rvalues, corresponding to Watson’s s values,
which are to be determined. On integrating round the branch points of the integrand
and equating to an integer, we can determine the discrete values of z, which, except
for a certain constant, are identical in form and value with the proper values determined
by Watson’s full analysis. Watson’s solution is then actually, although not explicitly
stated so by him, a direct determination of the proper values of eigenfunctions appro-
priate to the particular problem. The complete equivalence will become quite clear
as the analysis proceeds.

The phase integral method, which will be readily recognized as the approximate
phase integral method of the Bohr-Sommerfeld theory, gives an alternative method of
attacking the problem, and is one which agrees with Watson’s theory in the case already
dealt with by him. It can, moreover, readily be extended to the case of finite earth
conductivity and elevated transmitter and receiver with which we wish to deal. The
present paper is concerned with this analysis.

This phase integral method is more than a mathematical artifice to obtain a formula
for calculating the electric field at a distance from a wireless transmitter. It has a certain
generality, and exhibits the solution as one of a general class (eigen value solutions)
appropriate to problems of this kind, encouraging the hope that other problems
of this type may be solved by similar methods. As will be seen, it expresses in
its form the physical realities of the problem. It affords also a solution to the case not
considered in the original problem, but of considerable practical importance, where
there is a gradient of refractive index in the atmosphere above the earth.

If r is the distance of the receiver measured from the centre of the earth, and ¢ is its
angular distance from the transmitter, the phase integral method expresses the potential
function ¢ at the receiver in the form :

v=>A4,f(r,n,¢) s=0,1,2,etc., (1-4)

ng

which, as far as the function form f(r,n,, ¢) is concerned, is identical with appropriate
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DIFFRACTION AND REFRACTION OF WIRELESS WAVES 275

approximations to Watson’s eigenfunctions. Only the values of the constants A
(independent of r and ¢) are undetermined, but they can be determined by comparison
with Watson’s analysis, when the proper values n; appropriate to the case considered
have been found. Thus by combining this theory with Watson’s original analy51s a
complete solution of the problem can be obtained.

During the course of these investigations two papers by Wwedensky (1935-6)
appeared, in which the original Watson analysis was extended to take account of the
finite conductivity of the earth, and of the effect of elevating the transmitter and
receiver. On comparison with our results, it is evident that, with his approximations,
his results are strictly equivalent to ours. Slight differences in the numerical results
may be attributed to differences in the approximations for determining the proper
values. In our method an adjustment was made to bring the proper values to the same
as those in Watson’s theory, in the limiting case where the conductivity or wave-length
is great enough. In his case the limiting values of n differ slightly from Watson’s values.

2. GENERAL OUTLINE OF THE ANALYSIS

It has already been shown (Eckersley 1931—2) that if in the usual way the solution
of the fundamental wave equation for the potential function ¥, expressed in spherical
co-ordinates, is assumed to be of the form

¥ =) ¥2(9), (2:1)
where ¥, (r) is a function of 7 only, and ¥,(¢) is a function of ¢ only, then the value of
¥a(9) is

¥a(g) = L(—cosg), (2-2)
which is a Legendre polynomial, where 7 is the proper value to be determined.
Also by writing Uy (r) = %exp[QmS],
then approximately g—f = :t%, (2-3)
and S = i%der, (2-4)
A2 5
where V— [1 —g(r) *(%7) n(n+ 1)] : (2:5)

The extra term — g(r) is introduced into the expression for §'in (1-3), to allow for the
refractive index x of the medium in which the waves are travelling. It was shown that

pr=1—g(r), (2-6)
35-2
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276 T. L. ECKERSLEY AND G. MILLINGTON ON THE

and that the solution expressed in (2-3) is justified everywhere, except near to the zero
of V given in (2-5), i.e. near the branch point of the integrand in (2-4). This exception
means that there is an essential error in the phase integral, which in this case gives
zero for the integration round the branch point, whereas by comparison with Watson’s
theory it should be 7. This is introduced into the analysis below as the unknown
phase 2, which can be determined as above, or at a later stage, where the height factor
is compared with Debye’s approximate formula for the Hankel function.
As a second approximation for ¥, (r), Jeffreys (1925) has given the value

1
Yi(r) = 0] exp[2mS], (2:7)
where S is still determined as before, and where
Jr) = V4 (28)

The proper values for z are obtained by the phase integral
N :
27T§a7d7”: 27s 4+ 2+ y, (2+9)

where s is a positive integer, and the integral is taken round a
contour between 7 = r,, at the surface of the earth, and r = 7,
where 7, is the branch point at which V is zero.

In fig. 1 AB represents the downcoming branch, which on
reflexion at the surface of the earth with a change of phase y,
becomes the upgoing branch CD. The change of phase Q on
integration round the branch point is defined as the change
of phase in going from D to A. Inspection shows that for an
assumed time factor exp(wt), as is implicit in Watson’s analysis,
the downcoming branch 4B corresponds to 45/dr = -+ V/A and
the upgoing branch CD to d5/dr = — V/A, while if we start from
an arbitrary point P on the branch 4B, then positive values of
s correspond to integration round the contour in the direction
PADCBP. If with Wwedensky we were to take the time factor
exp(—wt), the upgoing and downcoming branches would be-
come 05/dr = -+ V/A and —V/A respectively, and for positive
values of s the direction of integration would be PBCDAP.
It is because we have chosen the Watson form that 2 and y
appear with positive signs on the right-hand side of (2-9).

The phase integral in (2-9) may now be written

Fic. 1

2%71fﬁVdr= 2ms 1 Qv (2-10)

where s = 0, 1, 2, 3, etc.
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DIFFRACTION AND REFRACTION OF WIRELESS WAVES 277

The condition V = 0 when r = r, gives from (2-5)

) .
l_g(r‘>—(§7/}—rl) n(n41) = 0. (2-11)

The values of # obtained by solving these two equations correspond to the proper
values determined by Watson’s analysis, and are put into (2-2) and (2-7) to give the
various terms of ¢ in (2-1). The ,(¢4) term gives the form of the exponential attenuation
factor, and the y,(r) term gives the required height factor.

The phase integral theory also allows for the investigation of the effect of the refractive
index of the air, by assigning a value to the function g(r) in (2:6). In general the
integrand V becomes very complex, but it is possible to choose the form of g(7) to make
the integral tractable, while corresponding to the practical conditions of a refractive
index decreasing approximately linearly with height.

The analysis is first worked out for g(r) assumed zero, and the simple diffraction case,
in which the effect of the ionosphere as well as of air refraction is ignored, is extended
in detail to the study of height-gain effects on short waves.

3. THE PROPER VALUE RELATIONS

The notation previously used (Eckersley 1931—2) in deriving the proper value rela-
tions is not convenient for our further applications. A slightly modified derivation will
therefore be briefly given here.

On putting g(r) = 0, V'in (2-5) becomes

v— [1—(i)2n(n+ 1)]%, (31)

2mr
and from (2-11) r = %J{n(n—l— 1)} (3-2)
2%
Thus (3-1) may be written V= [1—(%) ] . (3-3)

It is not immediately obvious, but in the sequel it appears that 7, is only slightly greater
than r,. Anticipating this result we may write

r =r1(1+£), (34,

where £ is assumed tentatively to be a small quantity, which is in general complex.
(3-2) may now be written

Jp(nt1)} = 2mr,(14-8) /A = x(1+8),
where x = 2mrg/A. (3-5)
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278 T. L. ECKERSLEY AND G. MILLINGTON ON THE

In practice, even for long waves, x is very large, so that n can be assumed large, and
we may write

n+% =x(1+&) = 2mr /A (3-6)
If now we write % = Ccosa = ng (1+8), (3:7)
then from (3-3) V =sing,

and dr = r,seca tana da, so that the phase integral in (2:10) becomes
2m [0 9
QTJ r tan?ade = 2ms+ Q2+, (3-8)

where ¢ is the value of @ when r = 7, i.e. from (3-7)
cosay = 1+§. (3-9)
Since ¢ is small, «, is small, so that (3+9) gives

£= 1. (3-10)

From (3-8) we have 2(%%7_1) [—tanay+ay] = 2ms+ Q2+,

and since «; is small, and 277,/A = 277/ = x from (3-5),

3
 2xo

3 = 2ms+0Q2+%. (3-11)

This equation has to be solved for «,, for substitution in (3-10) to give £. Of the three
roots only one corresponds to our physical problem. Returning to the form of ¢,(¢)
in (2-2), and replacing the Legendre polynomial, since # is large, by Laplace’s approxi-
mation, we have

al#) = (s cosl(n-+3) (n—4) — o,

mn sin ¢

provided ¢ is not near to 0 or 7.

As far as the modification to Watson’s formula is concerned, we need only consider
the relevant exponential term of this expression, and remembering that the time factor
assumed is exp(wt), we may write

Va(4) = expl —u(n+1) 4] (3-12)
Now from (3-6) and (3-10)
sy

—i{n+3) = — o1 +£] = —wxp+ 750,

and the complete wave function is of the form

exp[(wt—xg)] exp[:g-g-é—5 ¢] . (3-13)
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The first term correctly represents a diverging wave, and the second term must
contain an attenuation factor. If we write (3-11) as
2%
~é—° = [2ns+Q+x] e+ V7 [ =0,1,0r 2,
inspection shows that the only root corresponding to an attenuation factor is given
by [ = 0.

Thus ay = x3[3(2ms +Q+y) | ebem,
and E=—Ya} = pxte o, (3-14)
where p = 3[3(2ms+Q+y)]5 (3-15)

¢ is thus indeed small by virtue of the term x~%, and our tentative assumption is
justified.
In terms of p we may write «, as

ay = J(2p) x~Febem, (3-16)
We now have from (3-6)

n+% =x(1+§) = x+px¥e b,

which is identical with the form of the proper values found by Watson, and the attenua-
tion factor contained in the second term of (3-13) is

explipwtehm) 8] = exp| (2m)t (pe-vm), .

Writing* p=|p|ee (3:17)
so that from (3:14) = |g|e im0, (3:18)

the attenuation factor may be written

CXP[_% 3
where B = (2mry)* | p|sin(37—w). (3-19)

The phase integral theory thus leads directly and simply to the same form of proper
value relation as that obtained by Watson, but the relation is also more general, since
it takes account of the effect of the finite earth conductivity. The equation for p in
(3-15) now contains y, the phase change on reflexion at the surface of the earth, which
depends on the value of the earth constants. We pass on now, therefore, to a study of
the nature of this dependence.

* ® here should not be confused with w in the time factor exp(twt).
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280 T. L. ECKERSLEY AND G. MILLINGTON ON THE

4. THE FORM OF THE QUANTITY p

Taking for comparison with Watson’s form the case of a perfectly conducting earth,
we put y = 0. (3-15) then gives
1 2\7E

Now the values of §(37s)% for s = 0, 1 and 2, are each less than the corresponding
values for the first three proper values given by Watson, and calculation shows that
if Q is adjusted to make the values of p agree with the Watson values, which we will
call p,, then Q is approximately {7, and approaches this value as s is increased. Thus
if we write

Q = 2qm, (4-2)
so that (4-1) becomes po = 5[37(s+¢)]3, (4:3)

and put into this equation the values of p, given by Watson, we have the following values
for ¢:

$ Po q

0 0-8083 0-218
1 2-577 0-231
2 3-83 0-248

and as s increases, ¢ approaches %, and 2 approaches }7.

The phase integral thus suggests a convenient way by which we can adjust the
approximate value of p,, obtainable by comparison with the Debye approximations
for the Hankel functions, to the true Watson value. Although the validity of so doing
may be questionable on strictly analytical grounds, it can be shown that it in no way
affects the general form of the analysis which follows. Itonly gives rise to slight numerical
differences from the results obtained by assuming the Debye approximation, and as
it has the merit of agreeing with Watson’s value in the limit, the adjustment has
accordingly been made in computations based on the results of the analysis.

Having determined £ in this way, the case of the imperfectly conducting earth can
be treated by considering the value of y when the earth has a specific inductive capacity ¢
and a conductivity ¢ in e.m.u. The value of ¥ depends upon the angle of incidence of
the waves. If this angle is 47 —0, then y is found by writing the reflexion coeflicient as
a complex phase. Thus using a well-known relation for the reflexion coefficient, we have*

(e—2uoAc) sin— /(e —2toAc — cos?0)

(e—2toAc) sin 0+ /(e —2tgAc— cos?0) %

(
. N i LJ(@——QLJAC»—COSW)] )
which transforms to y = 2tan [ (c—2i0k)sind " (4-4)

* The form e—2toAc is appropriate to the time factor exp(uw¢). In the original paper the form
€+ 2t A¢ corresponding to exp( —twt) was wrongly used, and ex was used instead of e‘x, thus accounting
for the discrepancy between Wwedensky’s transition curve and ours.
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DIFFRACTION AND REFRACTION OF WIRELESS WAVES 281

¢ is determined by considering cos @, which is the direction cosine of the normal to
the wave surface represented by y,(4). If d is the distance of the receiver from the
transmitter measured along the surface of the earth, we write

al) = exp| — 2L dcost ],
and equating this to the form of ¢,(¢) in (3-12) we get

2m

1 dcost = (n+1%) ¢.

But since d = r,¢, this leads to
cosl = (n+%)/x =14

from (3+6). Thus from (3-9) we see that £ is the same as ,, and is therefore a small angle.

We can now write (4-4) as x = 2tan~ly, (4-5)
where 7 =t/{sinay = t/{a, (4-6)
and €—2t0lc (4-7)

¢ = J(e—=1—=2uwle)’

Putting the value of y in (4:5) into (3-15), and converting into terms of p, by

(4-3), we obtain
p = po[1-+A4 tan~17]%, (4-8)

where A4 =1[n(s+q).

This is the equation that represents the modification which it is necessary to make
to Watson’s original p, values, to take account of the finite conductivity of the earth.
In considering it we have to remember that 7 is itself a function of p, since it contains a,,
so that some method has to be found for solving the equation for p.

When A is large,  approaches zero, and p approaches p, as a lower limit. When A
is small, 5 gets large, and y approaches 7 as an upper limit. p then approaches an upper
limit, say p,, given by putting tan~!'» = {7 in (4-8).

1
Thus 3 Pr = ,00|:1 +m] .

Between the two real limits p, and p, there is a transition region, which has to be
investigated by solving (4-8) for p.
Under the conditions of our problem we can write without any ambiguity

S

tan~ly = {m—tan~lx,
where K =1[r,

Vor. CCXXXVII. A. 36
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282 T. L. ECKERSLEY AND G. MILLINGTON ON THE
so that we can also write (4-8) in the alternative form

p = p,[1—DBtan~! ]} (4+9)
where B =2/n[2(s+q) +1].

We need now to consider the general proposition of the representation of tan~!(Re‘?)
in the form X+.Y.
We have tan(X+1Y) = Re?.

By expanding and equating the real and imaginary parts we get a pair of equations,
which can be solved for tan X and tanh Y in terms of R and ®. These solutions can be
further transformed by the following substitutions:

Let tan L = 2Rcos $/(1 —R?), (4-10)
and sin M = 2Rsin @/(1+ R?), (4-11)

then the solutions will be found to be

tan X =tan 3L, ie. X =1L, (4-12)
and tanh ¥ = tan{M, i.e. Y = {log, [tan(in+3M)]. (4-13)
For any given values of R and @, L and M can be found from (4-10) and (4-11), and

hence X and Y can be found from (4:12) and (4-13). In particular when R = 1, X = 1n,
independently of the value of @, and M = &, so that

tan~!e'? = Ir+4}log, [tan(n+18)].

By using the form for p in (4-8) when | 7| <1, and the form in (4-9) when | | £ 1, we only
need to consider values of R between 0 and 1, and under these conditions @ always
lies between — ¢ and +47. Thus tan L in (4-10) is always positive, and X is given by
3L, asin (4:12), where L is in the first quadrant, while A/ in (4-11) always lies between
—3m and + 7.

If we put the value of «, in (3:16) into the expression for 7 in (4:6) and if we write ¢
in (4-7) as

€ = | él ew’

then » may be written, by using (3-17),

n= xE gt@m—v—to) ' (4.14)
[CIVE@lpl)
In our problem therefore we have:
b
b =In—v—1io, (4-16)
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and for |« |=1 R:MM)’ o (417)
X3
S =—tn+v+io. (4-18)
When ¢>1 (47) may be written
{=J(e—2wic),
and when 20A¢>¢ | (| = /(204¢) and v = —1m.

In most practical cases this latter condition holds, and then the relations (4-15) to

(4-18) become:
(2mry)*

for |n]|=1 R= NN o8, ] (4-19)
P = Em— o,

and for |«| =1 R= 4(2%%—%' 2D i, (4-20)
b = -5+ S

Considering first the 7 form of p, we have from (4-8)

l_ﬁl i 3iw/2
K 1 +A(X+.Y),
0 .

AY
By — o0
so that tan 3w T AX
and |7’0~! = [(1+4X)2+ (4Y)?]5.
0
Similarly for the « form of p from (4-9)
tan 30 = =BT
*1-BX
and | l/;i! = [(1—BX)%+ (BY)?]%

In this case @ is negative, and hence Y is also negative, so that tan 3o is positive, and
we get continuity at | 7| = | x| = 1 as we should.

To solve these equations we assume a value of R. Now & contains w, and v is also
unknown, unless we can assume that it is —%#. As a first approximation therefore we
put @ = 0 and v = — 7, so that & = 4%, according as we are using the 7 or the «
form. Having found X and Y by means of the L and M substitutions, we can solve
the above equations to get the first approximations to  and | p |. By putting the value
of | p| into Rin (4-15) or (4:17) we get a value of | {|, and hence of v if we cannot assume
that it is — 7. (In this case we must fix values of ¢ and ¢, and use the | {| value to find
the value of A corresponding to the chosen value of R.) We can then proceed by suc-
cessive approximations. In practice, by starting with small values of R, we can take,
for any given value of R, the final value of w found for the previous smaller value of R,

as our first approximation in the value of @.
36-2
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When we can assume that 20Ac>>¢, we see from (4-19) and (4-20) that for a given
value of R there corresponds a value of g2A¥, so that | p | and o can be plotted as functions
of this quantity. In fig. 2 this has been done, where ¢ is in e.m.u. and A is in kms.,
for s =0 for the first term of the diffraction formula. Actually in practice the
condition 2¢Ac¢>¢ only breaks down for points for which p is already near to the
upper limit, and for which o is very small.

1P w

8
1789 —

| /

, /

I8 /& \\\
N\

/e
-]

scaLE For |pl
w :
=
3
o
SCALE FOR w IN DEGAREES

/
1 ,’/ \\\ 3
o A ™ N .

o ~ S~ TN

09 —_’// \\N 2

o8 03 o5 1 2 6 26 50 o8 w0t

ok \b

|p| and o for s = 0 first term. o in e.m.u.; A in kms.
' F1c. 2

Having found | p| and w, we can also plot £ in (3-19) as a function of ¢%A%, and this
has been done in figs. 3 and 4 for the first two terms of the diffraction formula. We can
define the two limits (at which o = 0) by f, and f,, where

Bo = (2mro)} posinfm
and f. = (2m1y)% p, sin L,

sin(3mr—w sin(3m—w
so that ﬂzﬂomm——(.?’ T ):ﬂﬁm——-<.3 . )
po  sindm Pp  Siniw
Itis interesting to note that as ¢#A% is decreased, £ initially gets smaller than £, because,
in(lr—
as can be shown analytically, v always being positive, the term 5_12(3_7117@
3

than unity, and initially more than counterbalances the increase in the value of | p | /p,.
The effect is only small, but its physical meaning is not obvious. It is possibly an
anomalous result, produced by the approximations made in adjusting the limiting
value of p to the Watson value p;, or in Wwedensky’s analysis by the approximations

involved in the use of the Debye form of the Hankel functions.*

becomes less

* The initial drop in the value of £ has been found independently by Dr B. Van der Pol and
Dr H. Bremmer by a completely different method. Our transition curve agrees closely with the one
they have kindly shown us, except for a small difference in the upper limit due to the approximation
involved in our assumed value of gr.


http://rsta.royalsocietypublishing.org/

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
) ¢

Y
A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DIFFRACTION AND REFRACTION OF WIRELESS WAVES 285

For convenience a summary is here given of the limits of p and f for the first three
terms:

s 4 - B Po Pr Ao B Wmax
0 1-460 0-428 0-8083 1-789 23-94 53-0 20°
1 0-258 0-184 2577 324 76-3 96-0 7-5°
2 0-142 0-116 3:83 4-38 113-3 129-6 4-6°
ye
530—

52

50 T~ ~

a8 ™\

46 \

. \

y \
y \

30 \
28 \
26 \

o 02 05 2 10 20 20 00

p for s = 0 first term. o in e.m.u.; A in kms.
F1c. 3

960 —

04 —

$2 N

["
yd

78 \

7 \ 76:3

74 -7

o1 02 [ ' 2 S 0 20 50 100 x 10

p for s = 0 second term. ¢ in e.m.u.; A in kms.

Fic. 4
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5. THE PHYSICAL SIGNIFICANCE OF THE | FUNCTION FOR
POINTS ABOVE THE SURFACE OF THE EARTH

In the above analysis we have determined the form of the diffraction curve for points
on the surface of the earth, for which the study of the function ¢,(¢) suffices. When we
come to consider points above the surface of the earth, we have to take into account the
variations of the function ¥,(r), and to study the value of the whole ¥ function given
by (2-1).

Returning to the form of y,(r) given in (2-7), and using (2-8) and (2-4), we obtain,
on making the same substitutions as in (3-4) and (3-7),

1 2m
¥ (r) :Wexp[iTﬁ (tanoc—oc)]. (5°1)

The alternative signs in the exponential term correspond to the downcoming and
upgoing branches shown in fig. 1. For values of 7 greater than | r, | the upgoing branch
corresponding to the negative sign is predominant. Thus above r = | r; | we may write

sin o

Uy (r) = }7(1——jexp[~27?rl(tanoc——a):l. (5-2)

Referring back to the expression for 7, in (3-4), and using (3-18), we have
r=ro[l+[&| e ], (5:3)
and since | £| is very small 7, is nearly wholly real, and
| 71| =ro[1+|&| cos(3m—w)]. (54)
It follows that we may write (5:3) as
no=|n [ [1—al, (5:5)

where y=|&|sin(7—w) T;O—I,
1
which is < 1.
Now we also note that when r increases beyond |r, | the angle « rapidly becomes
mainly real. For if we write r = |r, | + 4, then from (3-7) and (5-5)

_ |7, | .
cosa = I H_7L[1 .

Since a and #/| 7, | are both small, this leads to

- JWlEe) o
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As h increases, k/|r, | becomes great compared with y, and « becomes nearly real,
approximating to an angle | a |, where

cos | a| :Lr_rl__‘, and la| = ﬁ%z“/% (5:7)
From (5-6) we have a=|a|+uw/lal|,
so that r, a is given approximately by
rla:r1|a|+ty%. (5-8)

Considering now the value of 7, tan «, we have from (3-7)

rtana = J(2—1) = (02— | n |2+ | |2 20}

But if we write

d=|r|tan|a| = J(2—|r ) =J@2|n |k =]|n]|.|a]

2
from (5-7), then ritana = d+w ‘—%l— =d+ Lyh%i' . (5+9)
By combining (5-8) and (5-9) we get
r(tana—a) = —r; |a|+d.

Putting this value in ¢ (r) in (5-2) we obtain

() = g OB (el ).

To get the whole potential function this must be multiplied by ¥,(¢4) as given in (3-12),
i.e.

al#) = exp[—u(n+3) §] = exp —"'rig | (510)

from (3-6), so that ¢ — mexp[——z—z—trl(gé— ) —Qde]. (511)

When put in this form it suggests an immediate geometrical and physical inter-
pretation.

In fig. 5, O represents the centre of the earth, and T is the transmitter on the surface
of the earth. R is the receiver at the point (|7, |+4, ¢), so that OR = |r, |+4 and
LTOR = ¢. PQ represents an arc of radius |7, |, OP = 0Q = |r,|, and QR = A. If
from R a tangent is drawn to the arc PQ to touch it at S, then

%_ |7y
OR " |r|+R

so that ZSOR = |a|, and RS = |r,|tan|a| = d.
Also £T0S = ¢—|a|.

cos SOR =
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Thus in (5-11) the term exp[—%ﬂ—trl (p—|a [):l, by comparison with (5-10), is equiva-
lent to propagation along the arc PS, with the attenuation associated with the bending
through the angle 7°0S, while the term exp[»—g;—t d] is equivalent to unattenuated

propagation along the tangent plane from S to R. The condition that 4/| ;| is >y

Fic. 5

implies, for instance, that for wave-lengths in the range 2-10 m. Zshould be greater than,
say, 500 m. Thus, provided we are far enough from the transmitter to be able to fulfil
this condition, we get a simple physical picture of a process of diffraction followed by
an unattenuated path out into space, analogous to the picture one would expect from
ordinary optical theory.

But the important point emerges that the process is referred not to the curved surface
of the earth, but to a fictitious sphere of radius | 7; | somewhat greater than the radius of
the earth. This point is obscured in ordinary optical theory because | 7, | is then so nearly
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equal to 7y, but with ultra-short waves the wave-length has become long enough for
| 7, | to have a very important physical significance.

This picture allows us to express an approximate relation between the height of the
receiver above | 7 | and the decibel gain in signal strength produced by raising it to this
height from |r,|. It will be noted that we are concerned here with the gain above
the signal strength level at | r, |, since the whole picture is referred to the sphere of radius
| 7,]. The variation of signal strength below |, |, or to put it another way, the gain of
signal strength at | 7, | above the level at the surface of the earth, can only be dealt with
by the more detailed analysis to follow. The picture shows that the gain in signal strength
produced by raising the receiver through a height 4 from @ to R, is equivalent to the
reduction in attenuation produced by moving the receiver along the arc QP to S through
an angle | a|. Calling the decibel gain D, we have from (3-19)

D = (20log,o¢) é)—ll%—,

. 2mro\}
= (2010g,9¢) | o sin(hr—0) . (72 |a].
For ultra-short waves w = 0, and putting in the value of | « | from (5-7) and expressing
79, A and £ in metres, this reduces to
D =1-44|p| K23, (5-12)

If, further, we assume that the first term of the diffraction formula is predominant,
and that p has the value of its upper limit p, = 1-789, then

D = 2-5843 2%,

Thus for 4 above, say, 500 m., we can regard D as a function of 41~%, and for a given
wave-length D is proportional to /4.

The radius |7 | which plays such an important part in the theory is given by
(5-4), and corresponds to a height £, above the surface of the earth, where

hy=|r|—ry=r1,|&| cos(in—w). (5:18)

For short waves we again put w = 0, and putting in the value of | {| derived from
(3-14) we obtain
Iy = 3(2m)H | p | A 05

If 7y and A are expressed in metres,
hy = 27-2| p | A¥ metres, (5-14)
and for ultra-short waves for which | p| = p, = 1-789,
hy = 48-71% metres. (5-15)

"The geometrical picture given above may also be interpreted by saying that as we
go up from the surface of the earth we do not get out of the diffraction shadow when

Vor. CCXXXVII. A. ’ 37
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we reach the edge of the optical shadow represented by the tangent plane to the
earth at 7, but only when we reach the tangent plane to the sphere of radius |7, | at
a height %, above 7. Points on this plane correspond to ¢ = |«|,i.e. to ¢—|a| =0,
and therefore to zero attenuation.

As we should expect, %, increases with A. This implies that on long waves, where the
attenuation is much less than for short waves, the gain for a given height is less. This is
found to follow from the more detailed analysis for points below |7, |. Physically this
corresponds to the fact that the edge of the diffraction shadow gets more ill defined as
the wave-length increases.

The above argument provides a limit to the practical application of the height-gain
analysis. From (5:14) we see that £, is proportional to | p |, and therefore increases for
the higher terms of the diffraction formula. For points beyond the tangent plane
corresponding to the first term, the higher terms would have to be taken into account.
Actually for points well out in space, the vectorial addition of all the terms obtained by
the complete analysis should reduce to the simple inverse distance law. Although
the analysis which follows has a formal generality, the application of the height-gain
theory is confined to the ultra-short waves, for which the results are of great practical
importance in the region below the tangent plane, where they can be represented
adequately by the first term of the diffraction theory.

6. THE DETAILED HEIGHT-GAIN ANALYSIS

In the above geometrical picture we limited ourselves to points outside the sphere
of radius | 7, |, and neglected one of the branches of the wave function given in (5-1). To
obtain the picture we also transformed the function ¥,(r), so that when re-grouped
with the value of #,(¢), it had an immediate physical significance.

In considering the complete form of the height-gain analysis, especially in the
important region below |7, |, it is more convenient to keep the ¢,(¢) and the ¥, (r)
functions separate, and to regard the ¥,(¢) function as giving the form of the attenuation
along the surface of the earth, and the ¥, (r) function as determining the height-gain
relation for any given angular distance, which is independent of this distance, prov1ded
we are not too near to the transmitter.

The expression for ¢, (r) in (5-1) may be written

) = isin gy ©PL14],

where A =" tana—al. (6-1)

In combining the two branches to represent the complete solution given by the sum
of the upgoing and downcoming waves, we must take into account the phase change
which occurs on integration round the branch point at r = ;. This phase change has
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already been defined as £ = 2¢m, where it is measured in going from the upgoing to
the downcoming branch. Thus, since the negative sign corresponds to the upgoing
branch, we have

Vi(r) = —J—(S—I—M) [exp(—d) +exp(ed +2qm)],
which may be written Uy (r) = %Sﬂ(—tﬂr—) cos(4 +¢]7r) (6-2)

The similarity between this form of ¢,(r) and the Debye approximation to the
Hankel function in Watson’s analysis, as quoted by Wwedensky, is obvious.
Considering the value of 4 in (6-1), we again replace tana—a by 1a3, so that

2mr, 4

/1 3

The numerical treatment of the problem is simplified by introducing a number of
subsidiary quantities. First of all we write

4= 103 = Ixad. (6-3)

,
2=1-7 (64)

so that y is a function of the height above the ground, and varies from 0 to 1 as 7 increases
from 7, to co. In practice, however, we are only concerned with heights above the
ground which are small compared with 7y, for which y is very small. Putting (6-4)
into the value of cosa from (3-7), we get

cosa = (1—y) (1+§),
and since y and £ are both small, we have
o = [2(y—E)]t (6:5)
Next we make the further substitution
y—& =1, (6-6)
i.e. led = y—| ] g-ttim-o),

|£]sin(im—0)

Then it follows that tand = =T cos(in—a)’ (6-7)
and [ = |&|sin(im—w) cosecd. (6-8)
When 7 = 7, y = 0 and § = 47+ w, and as r increases J decreases.
Now from (6-5), (6:6), and (6-8)
103 = 1(2[e0)t = L[2| £ | sin(im—w) cosec Fet?]E.
Thus from (6-3), by substituting for |£| in terms of | p |,
A = 3[2] p|sin(}7—w) cosec §e?]E. ; (6-9)

372
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A thus depends solely on the parameter d, which is a real positive angle, and is determined
by writing y from (6-7) as

y = | &| cos(3m—w) [1-+tan(dm—w) cot d].
By expressing the height £ above the ground as
h=r—ry=1y7,
we get h=r1y| & cos(3m—w) [1+4tan(im—w) cotd]. (6-10)
From (5-13) this may also be written
h = h[1+tan(3m—w) cotd], (6-11)

from which we see that when % has increased to %,,  has decreased to 7.

For a given set of conditions d is thus a connecting parameter between £ and the height
function 4.

If 4, is the value of 4 at the surface of the earth, we may put § = J, = 474w in
(6.9), but we may also put « = «, in (6-3), giving

Ay — by = —}(20)} (6:12)

by putting in the value of o, from (3-16).
On the ground, where ¢,(r) = ¥,(r,), we have from (6-2)

Yilrg) = 2PN o f v gm),

7o/ (sin o)
Ui(r) 1y /(sine,) cos(d+qm) )
so that mm—A/(sm)COS(AOHﬂ). (6:13)

From this relation we can express the gain of the level of ¢, (r) over the level of ¥, (r,)
at the surface of the earth. The factor r,/r is very nearly unity for all practical values
of r, and may be omitted in considering numerical applications of the formula. If D
is the decibel gain represented by the ratio of ¥, (r) /¢, (r,) in (6-13), we can split it up
into the sum of two terms, i.e.

D =20 logm:};ll ) ] D, D,, (6:14)
where D, = 20log,, \A/Ssllrrlli‘) (6-15)
D. — 901 cos(4+-qm)
and , = 20 oglO | | cos(do+ gm) (6-16)

where we are, of course, assuming that the first term of the diffraction formula is pre-
dominant.
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The term D, is small except for great heights. Since a and «,, are small, we may write

A/sin 2 [@]%
sina La]’
gg 3
l

B l:cosec d i
" L cosec?d

%o

but from (6-5) and (6-6)

from (6-8). Thus from (6:15) D, — 510g10[% ,
where §, = 27+, as above. ’

Dy

JERN

DECIBELS

0 0 400 600 800 000 1200 1400 1600 1800 2000 2200 2400

D, as a function of ZA—%. £ and A in metres
Fic. 6

As & increases from 0 to A4, § decreases from 274w to im, and sin ¢ increases from
sin(47+w) to 1. As £ further increases to 2A,, 0 decreases to 3m—w, and sin J decreases
again to sin(3m—w) = sin(%47+w) = sind,, whence D, is again zero. Over the range
h = 0 to 2k,, D, is therefore positive, and if we take w = 0, the maximum positive value
of D, is about 0-3 decibel. Above & = 2#,, D, becomes negative, and reaches a value of
about — 5 decibels when # = 214,. Thus within the range of height with which we are
concerned, D, is relatively small compared with the changes due to the term D,. D,
is only a function of §, which in turn from (6-11) and (5-15) is seen to depend only on
hA~% for all wave-lengths for which |p | = p,. Infig. 6, D, is therefore plotted as a func-
tion of #A~%, where £ and A are in metres, for use in ultra-short wave calculations.

Considering now the value of D, we take the value of 4 in (6-12), and from (3-11)
we get

Ay = Fxof = —sm— 32— 3y,
and using (4-2) and (4-5),
Ay+gqm = —smr—tan~ly

and v tan(d,+qm) = —1. (6:17)
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We now write A+qm = (4—A4,)+ (4y+qm),

cos(d+qm) A
so that cos(Ayfqm) — cos(4—A4,) —tan(4,+ qm) sin(4d—4,)

= cos(d—4,) +nsin(d—4,). (6-18)

Initially on the ground, where 4 = 4, the second term is zero and the first term is
unity, but as 4— 4, increases, the second term eventually becomes predominant for
short waves for which 7> 1.

From (6-9) 44, is given by

A—A,=1[2]|p|sin(im—w)]? [cosect Jed? —cosect§yedd] = A+1B,  (6:19)
where A= 12| p|sin(Ar—w)]¥[cosectd cos 30— cosect d, cos 34, ]
and B = 12| p|sin(3m—w)]¥ [cosectd sin §0— cosectd, sin §6,].

We then use the expansions for cos(4—4,) and sin(4—4,), and remembering that
7 is given by (4-14), the results can be combined to determine the modulus of

cos(4 +gm)
cos(dy+qm)’
By writing 7 = | 7| ¢'? a rather long reduction gives
cos(4+gm) ) , B
cos(Ag T qm) } = {(cos?4+sinh? B) +| | (cos @ sin 24 —sin $ sinh 2B)

+ |7 |? (sin24-+sinh? B)}.  (6-20)

Initially when 4 = 4, and 4 = B = 0, this reduces to unity as it should, and when B
gets large it approximates to ¢2f(| 5 |), where

SUal) =31—2]y]sind+[7 7],
and is equal to & |v77 | when |7 |>1. Under these conditions B itself approximates to
112 p | sin(im—w)]? cosect dsin §4,
so that D, in (6-16) becomes
D, = 20log;o[ /(| 7])]+Ds, (6-21)
where D, = [201og;,e] [3{2] p | sin(37—w)}¥ cosectdsin §4].

D, corresponds to | exp(—d) |, i.e. When the upgoing wave predominates. Assuming
that w = 0, D4 becomes

= [201log,oe] [3(/3 | p ) cosectdsin 07,
which may be written D, = |p|2f(9), (6-22)
where f(8) = 6:60 cosecd'sin 4. (6-23)
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Now by using (5-14) and putting @ = 0, (611) can be written
h=]p|34(9), . (6-24)
where $(8) = 27-2[1+,/3 cotd]. (6-25)

f(8) and ¢(d) can both be plotted against §, and hence a graph of f(0) against ¢(d) can

be constructed. For a given height £, ¢(0) can be determined from (6-24), and hence the

corresponding value of /(4) is read off the graph. From this value D, is found from (6-22).
For points well above #4;, where ¢ is small, we can write

cosectdsin 36 = 30t and cotd =4,
whence from (6-23) and (6-25)
P(d) = 27-240-482[ f(8)]2
As 0 gets very small the second term predominates, and

$(9) = 0-482[ ()]
Substitution in this equation from (6:21) and (6-23) gives on reduction
Dy =1-44|p | 1%

This agrees with the value found in (5:12). It is obvious that the relation is only
true for points well above # = £,, for in the previous argument % was height measured
from | r, |, and is here measured from the ground. But we see from the more accurate
analysis that Dy is a function of £1-% for all values for which the upgoing wave predomi-
nates, since from (6-22) it depends on f(J), and as we have seen ¢ depends on A1-%.
Moreover for ultra-short waves, for which | p | = p,, we can plot a fundamental graph
of D, against £0~%, which can be used for all such wave-lengths.

Having considered the region above 4;, we proceed to study the height-gain relation
close to the earth, where both branches have to be taken into account. We have to return
to the full relation in (6-20), and we see that initially the | 7 | term predominates over the
| 7% term. Now it will be found that in the coefficient of |7 |, the terms in @ sinh 2B
is initially greater than the term cos @ sin 24, since @ is of the order of %, 1.e. isnearly 1.
Thus the | 7 | term starts by being negative, and the modulus of the whole expression
actually becomes less than unity. This means that on going up from the ground, there
is first of all a diminution in signal strength. This effect has been noted by Wwedensky
in a particular case chosen to illustrate his analysis. The nature and magnitude of the
effect can be seen from the following analysis:

Suppose that for a small height % above the ground & has become 27+ — ¢, where 8’
is a small positive angle. We can now expand the expression for % in (6:10) to the first
power in ¢’, and it will be found to reduce to

h=ry|p|x73d cosec(3m—w). (6-26)
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By a rather long reduction 4—4 in (6:19) becomes
A—A4, = §[2p]? cosec(3m—w) et Gm=) §,

Putting cos(4—4,) =1, and sin(4—4,) = A4—4,, since ¢’ is small, and replacing 7
by its value in (4-14), we can write (6-18) on reduction as

cos(A-+qm) _x_‘l“_ / Lo o\ gt (=)
W—-l—|—l€||p|é‘ cosec(3m—w) e ,
and substituting for | p | 0" cosec(4m—w) from (6-26) and using (8-5) this becomes
cos(4 +gm) 27 g+ 370
=14+h5 5 6-27
cos(dg+qm — TR (6:27)

Now even if we do not assume that v is — 1, its value will be negative, so that 47— is
> 3m. Thus the modulus of the whole expression is initially less than unity for very small
values of 4. If we take v = — 1w and | {| = /(20A¢), then

hJ2m pidn
ENICD)

In fig. 7 this expression is represented vectorially. AB represents the unit vector along
the zero direction, and BX represents the direction §7. As the length of the vector

cos(4+qm)

cos(Ad,+qm) 1+

+3

Fie. 7

along BX corresponding to the second term increases from zero with #, it is clear that
the resultant vector initially decreases, and reaches a minimum of 1/,/2 at AC, when BC
is also 1//2. If Ak, is the corresponding value of 4, then

(6-28)
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The minimum resultant corresponds to a drop of 3 decibels. The resultant is again
unity at AD when & = 24, , and when plotted against # between 0 and 2#;, is
symmetrical about the value at #_; . So long as our approximations involving §" are
valid, the value of the resultant 4X for any given value of % is given by
h kTR
AX = [1———-+l(—) ] )
hmin ° hmin

and from this expression the initial shape of the height-gain curves, when v = —
can be determined as a function of 4/A, ;.
If h;, and A are expressed in metres and ¢ in e.m.u., then (6-28) becomes
b 106,/(30)

3
min o A* metres.

For A =10m. and ¢ = 1071, A ; = 27-8 m.

It is interesting to note that (6-28) is independent of p, and is therefore the same for
all the terms of the diffraction formula.

To calculate the complete height-gain curve between 4 = 0 and /; we must return
again to the general expression in (6-20). This is a long but straightforward process,
and the curve can be worked out as far as required, i.e. until it approximates to the curve
obtained by using the upgoing wave only, where the form of D, is given by (6-21).
At these greater heights the total gain D from (6-14) is given by

D = D+ D;+20log, [ f(|7])], (6-29)

and, as we have seen, for short waves D, and D, are both functions of #Z1~% only.
We can thus plot D+ Dj as a function of 20-%. The form of D below the region where
the upgoing wave predominates and (6-29) applies, depends on the value of ¢ and 2,
and on the value of ¢ if we cannot assume that 20A¢>¢. But we can plot the results
for practical use on a single graph in the following way:

We choose a given number of particular cases, e.g. A = 2, 4, 6, 8 and 10 m., to cover
the interesting range 2 to 10 m., and take ¢ = 5 and ¢ = 10713 for over land, and ¢ = 80
and ¢ = 107! for over sea. We then evaluate D, from (6-16) and (6-20), and plot for

each case a curve of
D,+D,—20logo[ f(|7])] against A1-%.

These curves will eventually all join up into the single curve for D, + D, where the
upgoing wave predominates. We thus get a single curve fanning out into a series of
curves as hl~% approaches zero, as is shown in figs. 8 and 9. In using these curves we
have to remember to add on the value of 20 log o[ f(| 7 |)] appropriate to the wave-length
and conditions we are considering, and to help in doing this the values to be added on
in this way are tabulated on the graph. In computing these curves p was assumed equal
to p, in all cases, but account was taken of the fact that it is not really justifiable to
assume that 20Ac¢ is >¢, e.g. for A=2m. and ¢ = 10713, ¢ = 5 and 20A¢ = 1-2. The
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‘phase angle of { is no longer nearly — m, but is much nearer zero. Referring again to
fig. 7, the direction of BX instead of being % is now 7 —wv from (6-27), i.e. is {7+,
where ¢’ is a positive angle considerably less than }7. The minimum resultant is now
cos?’ instead of 1/,/2, and the initial drop is much less, with a correspondingly smaller

value of ;.. On the scale on which the curves are drawn in fig. 8 the effect is there-

fore negligible, except on the longer waves over sea, and we would not expect to be
able to detect the effect experimentally.

Since |7 | increases as ¢ and A decrease, the initial parts of the curves in fig. 8 get
steeper as the wave-length is decreased, and the over land curves are much steeper than
the over sea ones. This is equivalent to the fact that the ground attenuation due to earth
losses increases rapidly with decreasing ¢ and A.

By using the reciprocal theorem the analysis applies as well to the case when the
receiver is on the ground and the transmitter is elevated. By combining both cases the
effect of having both the transmitter and receiver elevated can be calculated. If 4,
and /i, are the heights of the transmitter and receiver respectively above the ground,
then the signal strength at the receiver is obtained by adding to the value worked out
with both assumed on the ground, the gain reckoned from the ground up to %, plus the
gain reckoned from the ground up to /;. We thus get the benefit of the large initial
gain close to the ground twice over, and the net gain is considerably greater than would
be obtained by raising either the transmitter or the receiver alone to a height /i, /.
For a given value of /,+/, the optimum arrangement, if practical, is to make /&, = A,

It is here that the importance of the fictitious radius | 7, | comes in. With both the
transmitter and receiver elevated it is necessary for the line joining them to clear the
fictitious sphere of radius | 7, |, if the signals are to be unobstructed by the intervening
earth. This means, for instance, that on 10 m. the line joining them must clear the
surface of the earth by about 225 m., as will be seen from (5-15).

The absolute values of signal strength at the surface of the earth are dealt with
in the next section, but assuming for the moment the results there obtained, the height-
gain analysis can be used to prepare a set of graphs for various wave-lengths, giving
the signal strength for 1 kW. radiated, against distance from the transmitter for various
heights of the receiver above the ground. Fig. 10 shows a typical set of curves drawn
for A =10m., ¢ =5 and ¢ = 10713 e.m.u. Above the tangent plane and for distances
within about 100 km., where the first term of the diffraction formula no longer pre-
dominates, the curves have been calculated by the simple theory of a direct ray and
a reflected ray, using the reciprocal theorem, and taking into account the imperfect
reflexion and the curvature of the earth. The diffraction curves are then joined up to
these by eye, and the uncertainty in this region can only be one or two decibels.

The straight line portions of the curves show where the first term of the diffraction
theory is predominant, and the fact that they are all parallel shows that the height-
gain relation is independent of the distance from the transmitter. A complete set of

curves for A = 2 to 10 m. for land and sea has been published elsewhere (Eckersley 1937).
38-2
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It may be noted here that there is a complete absence of an “optical range’ at small
heights. The earth losses are so heavy, even close to the transmitter, that the curve
passes almost straight over into the diffraction curve. Even at greater heights, where
the curves begin comparatively flat and then bend over into the diffraction curves,
there is by no means a sudden and complete cut off.
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7. THE ABSOLUTE VALUES AT THE SURFACE OF THE EARTH

A A

The phase integral method, as developed in the above analysis, has given the general
— p g p y g g
< — form of the potential function . In order to convert the relations so that they can be
S — used for calculating absolute values of signal strength for a given radiated power,
e f recourse must be made to the fundamental technique on which Watson’s analysis is
M= O based, namely a detailed consideration of the boundary conditions which must be
E 8 fulfilled by the solution of the differential equations for 3. This process would follow

along the lines already given by Watson, the point of the phase integral method being
that it provides an alternative to the very complex analysis involved in the handling
of the contour integral, which, besides being simpler, exhibits the result as belonging
to a type of general eigenfunction solutions.

We can, however, deduce from the phase integral theory an expression representing
the variation of the amplitude factor 4, in (1-4) with wave-length and earth constants.
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This variation is expressed by the value of ¢(s) in (1-2) when put into (1-1). Here, to
avoid confusion, we should call this function ¢(n), since Watson’s s is our proper value #,
and we have used s for the order of the diffraction term. As we have used { for another
purpose needed in the present argument, we will replace Watson’s { in (1-1) and (1-2)
by €. Also his £a is our x. Now on the surface of the earth, where b in (1-1) is equal to a,
(1-1) can be converted by using (1-2) to a form in which the £ functions all appear in
a term in the denominator; and further by approximating to Watson’s ¢ functions,
since the proper values n are known to be large, this denominator can be written

drt(x) L]
arewx) Ll 7-1
L) o
Moreover the proper values are determined by the equation
£(x) ¢
—= = 0. 7-2
O 2)

Now returning to our proper value relation as given in (6-17), where we replace
4, by its value 4xa3 from (6-12),

tan[gr+ixad] = —n = S

{sina,
from (4-6), so that —sin a, tan[gm + txad] —fc = 0. (7-3)
It thus appears that gg ((xx)) in (7-2) is given from the phase integral by
g_((;c_) = —sina, tan[gm+ixad]. (7-4)

Actually the {(x) function corresponds to our ¢,(r,) function, and is proportional to

m cos(gm+4xa3). This is borne out by Wwedensky’s analysis, where he derives
&(x) and £’ (x) from the Debye approximations to the Hankel functions, and shows that
£(x) is of this form, and that the proper value equation is given by (7-3). Actually he
gets a difference of sign due to his use of the time factor exp(—wi), but it can be shown
that the two forms are strictly equivalent in every respect, except of course that he uses
+m where we use gm.

We need now from (7-1) the value of %z[g ((x))

e :|, and assuming that o, is small this is
given from (7-4) by

n

Zi%[g((;))] - "%‘0 [tan (gm -+ $xad) +xo sec?(gm -+ $xad) ]
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o, as a function of # is given from (3-9) and (3-6) by

cosay = 1—af = (n+})Jx,

so that 7%0 = ;176.
0
Remembering that tan(gm+ $xad) = —Z:f from (7-3), we have on reduction
0
dree) ol 1 ¢ :
il |~ 4w g o

Now for perfect conductivity { = co, and (7-5) reduces to «f, i.e. from (3-16) to
—2px~%¢~#7 which is exactly the form given by Watson. It is clear, therefore, that if

we write
1 L

C=1—0s—r—y
2ok (xad’

then C'is a modification factor appearing in the denominator of the amplitude term in

Watson’s original formula.

<]
1000

scc'\

200 \

Pl

\
20
10
\
. \
. N
] 02 oS 1 2 £ 10 20 50 100 xj0~7
P Y
o in e.m.u.; A in kms.
F1c. 11
Putting in the value of «, from (3-16) we obtain
g g 4
C=1+2 ¢htm | > ohin (7-6)

2p 4p?
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where 2=,
and if - 20Ac>e, v=—1m,
x5 2mry)d
then lgl:léf':(J(Qg))o'f/l%
2 )
and . C — 1 ._|—g_|_ e“%tﬂ_l_l__'g_zle{zguy'
P 4p

It is obvious that we can plot both the modulus and phase of C as functions of ¢#A%, since
p has already been so represented. The value of | C'| plotted for s = 0 is shown in
fig. 11.

It is interesting to note that by studying the value of | C | for very small values of | g |
it can be shown that | C| initially becomes greater than unity, but then it turns and
becomes slightly less than unity before finally proceeding to the larger and larger values
obtained as ¢ A% gets smaller. The effect is similar to that noted for § near to the lower
limit.

Putting the value of C into the Watson formula with its modified exponential attenua-
tion factor, the field strength in mV./m., at a distance d km. from a vertical dipole on
the surface of the earth radiating 1 kW. on a wave-length A km. can be represented by

E::

27-5 —0-000157
7] d%/I%‘CXP[ i /)’d:l mV./m., (7-7)

where it is assumed that the first term of the formula is predominant.
For short waves the second term in (7-6) is predominant, and

1C| = || at (2m7g)fA-E

2(pl  [C1P20p] — [C122]pP
whence from (7-7)

213 0
= 004713 exp [ O 5] v m,

where, as before, d and 1 are in kilometres.

Close to the transmitter the signal strength can be calculated by Sommerfeld’s
theory for a flat earth, and the transition from this curve to the diffraction curve can
be putin by eye. Itisfound that in all cases the single term diffraction value lies below
the Sommerfeld curve as it should do. As we approach the transmitter, the point at
which the true curve departs from the single diffraction curve may be determined
approximately by examining when the second term begins to weigh, and an idea can
quickly be obtained of the way in which the true curve begins to bend up towards the
Sommerfeld curve, as an aid to drawing in the transition by eye. For this purpose the
curve of / for the second term of the diffraction formula given in fig. 4 will be found
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useful, it being remembered that the corresponding | p | values can be found from (3-19),
since o is less than 7-5° and can be neglected in this connexion.

The ground curves for various wave-lengths from 2 to 2000 m. have been drawn, and
a good fit with the Sommerfeld curve is obtained in every case. In particular, as men-
tioned above, the height-gain curves from 2 to 10 m. (see fig. 10) are based on ground
curves calculated in this way.

8. THE EFFECT OF AIR REFRACTION

We come lastly to the consideration of the effect of air refraction. As was stated in
the introduction, this can be studied by giving a value to the function g(r) in (2-5)
which has so far been taken as zero.

Physical considerations indicate that to a first approximation we may consider the
gradient of refractive index to be practically constant. We seek, therefore, a form of
the refractive index which will obey this condition, while making the phase integral

tractable. If we therefore write (2-6) in the form*
2

T
pr=1—g(r) = 1=p+e 3, (8:1)
then g

Since at the earth’s surface x is practically unity, and for small heights r = r,, this
reduces to

which is constant and negative as required.
Now if R is the radius of curvature of the ray in the atmosphere

1 Lou., op

R™ o or
so that R = ryfe. (8-2)

From the known constitution of the lower levels of the atmosphere R is of the order of
57,. Thus ¢ is of the order of 0-2. Also at the surface of the earth x is approximately
1-+2-9x107% Thus (8-1) gives ‘

1—p+e=1+58x10"4
i.e. e—n = 58x107% (8-3)
so that 7 only differs from ¢ by a very small percentage.

* The symbols 7 and € used in this section should not be confused with the same symbols used
earlier in this paper.
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For the new proper value relation we have from (8-1), (2:10), and (2-11)

2m\ [ 2 A\? b .
Q(T)L,{I‘”“ﬁ"(‘zﬁ) ”<”+1>} dr = 2ms+ Q-+, (8-4)
and 1~77+65‘23—(L)2n(n+ 1) =0
3 \2mr, :

The latter equation may be written

() Tatnr1) —es7) = 1, (55)

and (8-4) becomes
1 PAY
2(%;) (1—7;)%f {1 —(7—7}) }Edr — 215+ Q4.
Analogous to the former argument we write
1 =1y(1+¢&) and cosa’ =r/r,
and the integral becomes

27y

21—} () (—3o?) = 2m5+- Q4%

Provided we are near to the upper limit (since otherwise x depends on p) this leads to

g = pateh, (5-6)

in which p=te, (8:7)

where p is the old value for g(r) = 0.
To obtain (n+ %), we write (8-5) as

n(n+1) = 2?[1—y-+e+ (1—7y)28'].
But from (8-3), ¢—7 is very small compared with unity, so that this may be written
nt g =Yl 1)) = x[14+(1—7) €]
The value of ¢,(¢) in (3-12) is now
¥a(f) = exp{—u[1+(1—7)E] 4},
and the attenuation factor is exp[x(1—7) ¢[£'],]-
By (8-6) this is equal to exp[— (1—7) p'x* §sin Ln].
Itis useful to express the attenuation in terms of the actual distance d measured along
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the surface of the earth, rather than of the angular distance ¢. By writing ¢ = dfr,
and x = 277y/A, and by using (8-7), we have finally for the attenuation factor,

exp[——(%ﬂ)g(l~—77)’3*75%pdsin%7r:|. (8-8)

Now it is obvious that this is exactly the form which would be obtained for g(r) = 0
on an earth of radius rj, where
"o
1—7°

ro= (8:9)

The effect of air refraction is thus to reduce the attenuation (as is physically obvious
since the wave is bent towards the earth and tends to follow the curve of the earth),
and thesignal strength, obtained at a distance d, is the same as would be obtained without
air refraction on an earth of radius 7§ given by (8-9).

Putting the resultin another way, we may say that if the signal strength without air
refraction has a certain value at a distance d, then with air refraction the signal strength
has the same value at an increased distance d’, where

assuming that we can neglect the small change in the amplitude term so produced.

This result shows that under certain conditions, especially when there is water vapour
present, the air refraction may have a large effect on the range of a short-wave trans-
mitter. It follows similarly that under abnormal conditions, when there may be an
inversion of the gradient of the refractive index due, say, to temperature, the range of
a transmitter may be seriously lessened.

The relation of (8-9) is equivalent to a transformation of space, whereby the curvature
of the ray produced by refraction is nullified, and the radius of the earth is increased
to 7g. Schelleng, Burrows and Ferrell (1933) were led by physical considerations to use
such a transformation to determine the effect of air refraction, and the phase integral
method shows that the transformation they actually used is justified by the analysis of
the wave propagation.

From (8:8) we see that as 7 gets bigger the attenuation gets smaller. Actually it
follows from (8-6) and (8-7) that when 7 is very nearly unity, {’ may no longer be small,
and our approximations break down. The form of (8-8) suggests, however, that when
n = 1 the attenuation coeflicient is zero. This we should expect physically. Since 7
is very nearly equal to ¢, = 1 corresponds from (8:2) to R = r,, i.e. when 5 = 1 the
curvature of the ray is the same as the curvature of the earth, and we should not expect
any attenuation due to diffraction.

Since the effect of refraction is to increase the ground signal strength, the height-gain
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relation should be reduced. An argument analogous to that given previously leads to
the conclusion that 4 is replaced by 4’, where

A" = [ /3pcosecd'e?’ |} (8-10)
and is the same as 4 in (6-9), with = 0, except that d is replaced by a new parameter §”.

d” is given in terms of a height 4" by replacing (6-10), with v = 0, by

b = %gl—l [1+./3cotd],
i.e. from (8:6) and (8:7) h = 28 l—g;)? [1-+/3cotd’]. (8-11)

Thus for a given decibel gain, i.e. for 4 = 4’; we have from (8-10) that § = §’, and we
can write (8-11) as

h

,
Y=

where /' is the height at which the same gain is obtained with air refraction, asis obtained

at a height 4 without air refraction. We thus have to go to a greater height to get the

same gain, and so the height-gain relation is reduced, as was anticipated.

In practice the value of # is not sufficiently near to unity to render our assumptions
invalid, so that the theory is entirely adequate to explain the effects which are to be
expected on short waves.. The practical application of the theory is considered in detail
elsewhere (Eckersley 1937). It will suffice here to say that the theory provides an
explanation for the very variable results which have been obtained on some ultra-short
wave circuits, especially where the path between the transmitter and receiver has
been mainly over sea,and where the receiver has been near the limit of the optical range
or beyond it.

9. CONCLUSION

In conclusion, it may be said that the phase integral theory leads to the complete
form of the solution for points on the surface of the earth, and presents the analysis in
a form which exhibits clearly the physical nature of the problem. Inaddition, it extends
the solution to points above the surface of the earth, and to the case where air refraction
is present as an important factor. While the solutions are not general in the sense of
applying to any point in space, however far from the earth or near to the transmitter,
they provide a complete basis for calculating all the cases of practical importance. In
particular the theory has been applied to the preparation of a set of ground curves for
various wave-lengths from 2 to 2000 m., and of a set of height-gain curves for the range
2-10 m. It has also provided the necessary material for calculating the probable effects
of air refraction.

39-2
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10. APPENDIX

In this paper stress has been laid upon the application of the analysis in the region
where the first term of the diffraction formula predominates. But it has been pointed
out that the phase integral method gives an expression for the complete solution, and
as it may be useful to study in detail some cases in which it is necessary to take more
than one term into account, this is given here in a form suitable as a basis for computa-
tions.

Leaving out the constant phases common to all the terms, the signal strength
| £ in millivolts per metre at a distance d km. from a transmitter radiating 1 kW. from
a vertical dipole on the surface of the earth on a wave-length A km. may be derived
from the expression

exp[ —tpate~t7 g].

e Sz“’ 275 (sin %)% cos(4+qm)
o Cpdt A3\ sina | cos(d,+gm)

o and 4 are functions of the height # (in metres) of the receiver above the ground, being
connected with % by the parameter & as described in §6. o, and 4 are the values of
« and 4 on the ground.*

¢ as a function of s is considered in (4-3). In (3-17) we have expressed p in the form
| p| ¢, and from (7-6) C can be expressed as | C' | ¢'¥, where the phase N can also be plotted
as a function of ¢* A% when 20A¢> ¢.

From § 6 (w——f) can be put in the form

( sin )ietz}wo—a)
M 2

sin d,,
M from (6-18) can be determined in the form
cos(4,+ qm)
cos(A+qm) | .p
cos(dy+qm) |’

where the modulus has been considered in detail in (6-20).
The exponential term can be written

expl | | sdgsin (o) exp[—1] p | g cos(fr—a)],

and replacing |p| in terms of £ in (3:19), and putting ¢ = dfr, and expressing 7, in
kilometres, we get

CXPI:—O 000157/%] [_LO 000157ﬂa’ ey )]

. . . sinoy\* cos(4+ g
* When the transmitter is also elevated we must include another fact0r< : °> (4+gm) s
sina / cos(dy+ qm)

appropriate to the height of the transmitter above the ground.
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Thus, finally, we may write E = ZZ | E | ¢49,

27-5 sin 0 \#| cos(4 -+ qm) 0-000157 000157 ]
where Bl = Cllp|drs (sm&) cos(4,-+ gm) x l: pd
and @s=~N—w+i(ao-—3)+P—999f£5_7ﬁd (b7 —0).

This expression is equivalent to that obtained by Dr B. Van der Pol and Dr H.
Bremmer (19374, b), who have actually computed in some special cases up to twenty
terms for distances near to the transmitter.
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